Principal Component Analysis(PCA)
Overview 머신러닝 혹은 딥러닝으로 모델을 학습시키다 보면, 엄청난 양의 행렬 연산이 요구되는 경우가 다반사입니다. 컴퓨터는 이미지, 데이터 분포등의 정보를 벡터들로 구성하여 인식하는 경우가 많기 때문에 대부분의 전처리된 Input Data는 벡터의 모습을 띄게 됩니다. 하지만 때때로 이 전처리된 벡터의 크기는 굉장히 커서, 딥 러닝 모델에 과도한 부하를 주고 학습의 효율을 떨어뜨립니다. 벡터를 구성하는 모든 차원(크기가 n인 벡터라고 할 때 n차원)의 정보가 의미있는 것은 아니며, 의미있는 부분들만 추려내어 차원을 축소시킬 수 있다면, 이는 데이터의 형태(분포)를 유지하면서 데이터의 크기를 줄여 학습의 효율을 높일 수 있을 것입니다. 예를 들어 아래 그림에서 데이터는 3차원 분포를 나타내지만, 실..
2020.04.02