Artificial Intelligence(47)
-
Forget the AI Race. Let’s Invest in a Data Grid for AI
Articles Akash “Aki” Jain is President of Palantir USG, Inc. where he focuses on Artificial Intelligence, USG Technical Engagement, Enterprise Data Management and Cloud Architecture. Private Sector Perspective — Neil Armstrong’s small step for man in 1969 was a symbolic resolution to the Cold War’s most visible global security power struggle: The Space Race. As victor, the U.S. proved its techno..
2023.08.13 -
22-W12 Research Seminar
AI-synthesized faces are indistinguishable from realfaces and more trustworthy [Paper] Abstract Artificial intelligence (AI)–synthesized text, audio, image, and video are being weaponized for the purposes of nonconsensual intimate imagery, financial fraud, and disinformation campaigns. Our evaluation of the photorealism of AI-synthesized faces indicates that synthesis engines have passed through..
2022.03.22 -
Going deeper with convolutions (GoogLeNet) - 2014
Abstract ILSVRC14에서 우승한 모델 GoogLeNet은 네트워크의 "width"와 "height"를 모두 확장하면서도 연산량을 constant하게 유지시킴으로써 연산효율을 높인 모델이라 설명한다. 이를 위해 Hebbian Principle과 Multi-Scale Processing을 적용했다고 한다. GoogLeNet은 총 22개의 레이어로 구성되어 있다. (2014년 논문이라 2015년 논문인 ResNet이 나오기 전이므로 Layer의 개수가 비교적 적다.) Hebbian Principle: 헵의 이론이라고도 불리며 뇌의 시냅스 연결성은 경험에 의해 수정될 수 있고 시냅스 뉴런의 pre, post firing에 의해서도 영향을 받는다는 내용이다. 위 논문에서는 "– neurons that ..
2021.10.11 -
Deep Residual Learning for Image Recognition (ResNet) - 2015
Abstract Neural Network(이하 NN)의 깊이가 깊어질수록 NN을 학습시키기가 어려워진다. NN의 깊이가 깊어질수록 조금 더 추상적인 Feature들을 학습시킬 수 있기 때문에 정확도가 향상될 것이라고 기대했지만, 아래의 그래프에서 볼 수 있듯, 깊이가 깊어질수록 나타나는 문제인 Vanishing / Exploading gradient등의 문제로 인해서 오히려 정확도가 낮아지는 모습을 보인다. 저자는 "Residual" Network는 최적화하기가 비교적 간단하며, 상당히 깊은 NN에서도 높은 정확도를 얻을 수 있다고 이야기한다. 실제로 ILSVRC 우승 모델들 중 ResNet을 사용한 모델부터 레이어의 개수가 22개에서 152개로 급격하게 증가한 것을 확인할 수 있다. Introduct..
2021.10.09 -
ImageNet Classification with Deep Convolutional Neural Networks (AlexNet) - 2012
Abstract AlexNet은 ImageNet LSVRC-2010 Contest (ILSVRC)에서 120만개의 고화질 이미지를 1000개로 분류했고, top1, top5 error rates에서의 상당한 개선을 이루어냈다. AlexNet은 6천만개의 파라미터, 65만개의 뉴런으로 구성되어 있으며 5개의 Conv Layer (그중 몇개의 레이어는 max-pooling Layer를 포함한다), 3개의 FC레이어, 그리고 1000-way Softmax를 통해 분류를 수행하도록 구성되어 있다. (위의 이미지 참고) FC레이어에서의 Overfitting에 따른 에러를 최소화하기 위해 "Dropout"을 사용하였으며 트레이닝 시간을 단축시키기 위해 "non-saturating neuron"(activation ..
2021.10.04 -
[FSDL] CNNs
Full Stack Deep Learning의 2021 Spring Lecture를 정리합니다. CNN CNN(Convolutional Neural Network)은 합성곱(Convolution)을 사용하는 신경망의 한 종류로 "공간적" 정보를 유지한 상태로 정보를 다음 레이어로 보낼 수 있습니다. "공간적" 정보를 유지한 상태로 특징을 뽑아낼 수 있다는 장점 때문에 특히 이미지를 사용한 학습에 굉장히 유용합니다. 잘 알려진 이미지 분류 모델은 이렇게 Convolution Layer를 여러 겹 사용해서 모델의 특징들을 각각 뽑아내고, 뽑아낸 특징들을 바탕으로 FC(Fully Connected Layer)를 적용하여 이미지를 분류하는 형태를 띕니다. Fully Connected Layer(FC) 일반적인 ..
2021.10.01