SVM(2)
-
[SVM] SVM으로 MNIST 분류하기
서포트 벡터 머신(Support Vector Machine: 이하 SVM)은 Classification 문제에서 결정 경계(Decision Boundary)를 효율적으로 찾는 방법을 제공합니다. 즉, 아래 그림과 같이 두 클래스(빨강, 초록)로 분류될 수 있는 데이터 셋이 있다고 했을 때, 이 데이터셋을 가장 잘 구분 짓는 경계선(실선)을 찾는 것입니다. 이번 포스팅에서는 SVM을 이용해서 MNIST Dataset Classification을 개선해보려 합니다. (Application에 관한 글이므로 SVM의 수학적 원리와 기타 증명 과정은 생략하였습니다.) 지난 MNIST 포스팅 에서는 Random Forest를 이용해 간단한 MNIST 분류 모델을 만들었습니다. 이번에는 SVM을 이용해서 MNIST ..
2020.04.18 -
Spam Classifier - implementation with Octave
* 첨부된 자료의 저작권은 COURSERA에 있음을 미리 밝힙니다. Spam Classifier - Implementation with Ocave 이번 시간에는 지난 시간에 논의한 바를 바탕으로 Spam Classifier 모델을 직접 구현해보았다.Spam Classifier Algorithm이 이메일을 분류하는 과정은 다음과 같다. 1. Preprocessing Emails 이메일을 처리하기 전에, 프로그램이 이메일을 처리하기 쉽도록 '전처리'단계를 밟아주는 것이 중요하다. 이 전처리 단계에서는 숫자들, 특수기호들, 서로 다른 URL주소들 등을 각자의 기준을 가지고 지정된 특정한 String으로 대체해 주는 것이다.예를 들어 모든 이메일 주소들은 "emailaddr", URL 주소들은 "httpaddr..
2019.02.14