Machine Learning(8)
-
Reinforcement Learning
보호되어 있는 글입니다.
2020.03.23 -
Saliency Map
*본 포스팅은 Stanford CS231n 강의를 참조하였음을 미리 밝힙니다. *캡쳐된 일부 강의 자료들은 CS231n에서 제공하는 PPT 슬라이드를 참조하였습니다. 현대 딥러닝의 아쉬운 점 중 하나는 딥러닝의 학습 과정을 딥러닝 코드를 작성한 사람조차 알기가 어렵다는 점입니다. 모델 학습이 성공했다면 왜 성공했는지, 실패했다면 왜 실패했는지를 해석하기가 어려운데, 그 이유는 기본적으로 딥러닝 모델은 많은 데이터를 한꺼번에 처리하며, 여러 겹의 레이어를 학습시키는 과정에서 적어도 수만 가지의 파라미터를 다루어야 하기 때문입니다. 따라서 VIsualize(시각화)를 통해 각각의 레이어에서 무슨 일이 일어나고 있는지, 더 나아가서 학습 전반적이 과정에서 무슨 일이 일어나고 있는지를 연구하려는 여러 시도들이 ..
2020.03.15