Deep Learning(9)
-
Probability For Deep Learning
위 포스팅은 위키피디아, 일반통계학 서적 등을 참고하여 정리한 글임을 서두에 밝힙니다. 머신러닝, 딥러닝 모델은 기존의 알고리즘과는 다르게 본질적으로 불확실한 요소들을 가지고 있습니다. 주어진 입력값을 통해 결과를 잘 '예측' 하는 것이 딥러닝 모델의 주 목표이기 때문에, 딥러닝 모델이 취하는 관점은 '확률과 통계'에 기반하게 됩니다. 이번 포스팅에서는 딥러닝 모델과 확률의 관계에 관한 몇 가지 인사이트를 살펴보도록 하겠습니다. Probability Conceps for Deep Learning 딥러닝 모델을 설계하다 보면, 딥러닝 모델 자체에 내재한 불확실성과 딥러닝 모델이 다루는 일상생활의 데이터에 대한 불확실성, 그리고 모델링 하려는 대상의 속성 자체에 내재된 여러 불확실성을 발견할 수 있습니다. ..
2020.03.21 -
Gradient Ascent
*본 포스팅은 Stanford CS231n 강의를 참조하였음을 미리 밝힙니다. *캡쳐된 일부 강의 자료들은 CS231n에서 제공하는 PPT 슬라이드를 참조하였습니다. 현대 딥러닝의 아쉬운 점 중 하나는 딥러닝의 학습 과정을 딥러닝 코드를 작성한 사람조차 알기가 어렵다는 점입니다. 모델 학습이 성공했다면 왜 성공했는지, 실패했다면 왜 실패했는지를 해석하기가 어려운데, 그 이유는 기본적으로 딥러닝 모델은 많은 데이터를 한꺼번에 처리하며, 여러 겹의 레이어를 학습시키는 과정에서 적어도 수만 가지의 파라미터를 다루어야 하기 때문입니다. 따라서 VIsualize(시각화)를 통해 각각의 레이어에서 무슨 일이 일어나고 있는지, 더 나아가서 학습 전반적이 과정에서 무슨 일이 일어나고 있는지를 연구하려는 여러 시도들이 ..
2020.03.15 -
Saliency Map
*본 포스팅은 Stanford CS231n 강의를 참조하였음을 미리 밝힙니다. *캡쳐된 일부 강의 자료들은 CS231n에서 제공하는 PPT 슬라이드를 참조하였습니다. 현대 딥러닝의 아쉬운 점 중 하나는 딥러닝의 학습 과정을 딥러닝 코드를 작성한 사람조차 알기가 어렵다는 점입니다. 모델 학습이 성공했다면 왜 성공했는지, 실패했다면 왜 실패했는지를 해석하기가 어려운데, 그 이유는 기본적으로 딥러닝 모델은 많은 데이터를 한꺼번에 처리하며, 여러 겹의 레이어를 학습시키는 과정에서 적어도 수만 가지의 파라미터를 다루어야 하기 때문입니다. 따라서 VIsualize(시각화)를 통해 각각의 레이어에서 무슨 일이 일어나고 있는지, 더 나아가서 학습 전반적이 과정에서 무슨 일이 일어나고 있는지를 연구하려는 여러 시도들이 ..
2020.03.15