Ai(11)
-
Spam Classifier - Theory
* 첨부된 자료의 저작권은 CORSERA에 있음을 미리 밝힙니다. Building A Spam Classifier 이번 시간에는 그동안 배운 Machine Learning의 지식을 응용해서 스팸 메일을 걸러내는 Spam Classifier를 모델링해보았다.우선은 모델링을 하기 위해 어떤 방식으로 문제를 설정하고 Feature들을 설정해야할지를 고민해야 한다.이때, 초기 모델은 단순하며 빠르게 구현할 수 있는 것으로 설정하는 것이 좋다. Spam Classifier는 Supervised Learning(지도학습)으로 학습을 시키는 것이 좋다.지도학습이란, 데이터를 주고 그 데이터가 가져와야할 바람직한 결과까지 입력하여 학습을 시키는 것이다.이 문제의 경우 스팸 메일 데이터를 넘겨주면서 이것이 스팸메일이라는..
2019.02.14 -
Bias & Variance
* 첨부자료의 모든 저작권은 COURSERA에 있음을 미리 밝힙니다. Bias & Variance 이번 포스팅에서 살펴볼 내용은 우리가 Machine Learning 을 통해 구현한 알고리즘의 성능을 진단하고, 오류를 수정하는 방법과 절차에 대한 것이다. 우리가 예측한 알고리즘을 검증하는 방법은 다음과 같았다.1. 알고리즘을 학습시킬 데이터를 더 모은다. 2. 비슷한 류의 Parameter set으로 알고리즘을 수행해본다.3. 추가적인 Parameter를 알고리즘에 집어넣는다.4. Polynomial 한 Parameter를 추가한다.5. Regularization parameter lambda의 값을 증가시키거나 감소시킨다. (즉, 각 항의 영향력을 감소시키거나 증가시켜본다.) 하지만 여전히, 위의 방법..
2019.02.12 -
Neural Networks(2)
*첨부자료의 모든 저작권은 COURSERA에 있음을 미리 밝힙니다. Neural Networks(2)- Examples and Intuition, Multi-Class classification 이번 시간에는 Abstract 하게 살펴보았던 Neural Network의 기본적인 로직의 구현을 통해조금 더 실질적인 인공신경망의 구현을 살펴보고, 또 이를 바탕으로 Output의 결과가 하나가 아닌 Multi-Class Classification모델도 간단하게 살펴보고자 한다. 저번 포스팅에서 간단하게 살펴보았던 인공 신경망의 기본적인 구조이다. 여기서 Input Layer인 Layer 1과 Output Layer인 Layer 3를 제외한 중간의 모든 Layer들은 겉으로 드러나지 않는 Hidden Layer..
2019.02.07 -
Neural Networks (1)
*첨부한 자료의 모든 저작권은 COURSERA에 있음을 미리 밝힙니다. Neural Networks (1)- Basic Model of Neural Networks 지금까지 Linear Regression과, Logistic Regression의 방법을 통해 Linear Model과 Classification 모델에서 컴퓨터가 기계학습을 어떻게 하는지 살펴보았다.이제 이러한 모델들을 바탕으로 Neural Network, 즉 인공 신경망을 구축하여 더 복잡한 학습들을 수행하는 모델을구축하고자 한다. 우선 '인공 신경망' 을 구축하기 위해 실제 사람의 신경망이 어떤 구조로 연결되어 있는지를 살펴보아야 한다.사람의 신경세포는 Input Wire의 역할을 수행하는 "Dendrites"와 Computation을 ..
2019.02.07 -
Logistic Regression with Octave
Programming Exercise 2 : Logistic Regression 이번 프로그래밍 과제에서는 Octave를 이용하여 Logistic Regression을 모델링하고실제 데이터를 이용해서 결과를 분석해야 했다. 구현해야 할 함수들은 다음과 같았다. ex2.m - Octave/MATLAB script that steps you through the exercise ex2 reg.m - Octave/MATLAB script for the later parts of the exercise ex2data1.txt - Training set for the first half of the exercise ex2data2.txt - Training set for the second half of the ..
2019.02.04