딥러닝(17)
-
Gradient Ascent
*본 포스팅은 Stanford CS231n 강의를 참조하였음을 미리 밝힙니다. *캡쳐된 일부 강의 자료들은 CS231n에서 제공하는 PPT 슬라이드를 참조하였습니다. 현대 딥러닝의 아쉬운 점 중 하나는 딥러닝의 학습 과정을 딥러닝 코드를 작성한 사람조차 알기가 어렵다는 점입니다. 모델 학습이 성공했다면 왜 성공했는지, 실패했다면 왜 실패했는지를 해석하기가 어려운데, 그 이유는 기본적으로 딥러닝 모델은 많은 데이터를 한꺼번에 처리하며, 여러 겹의 레이어를 학습시키는 과정에서 적어도 수만 가지의 파라미터를 다루어야 하기 때문입니다. 따라서 VIsualize(시각화)를 통해 각각의 레이어에서 무슨 일이 일어나고 있는지, 더 나아가서 학습 전반적이 과정에서 무슨 일이 일어나고 있는지를 연구하려는 여러 시도들이 ..
2020.03.15 -
Saliency Map
*본 포스팅은 Stanford CS231n 강의를 참조하였음을 미리 밝힙니다. *캡쳐된 일부 강의 자료들은 CS231n에서 제공하는 PPT 슬라이드를 참조하였습니다. 현대 딥러닝의 아쉬운 점 중 하나는 딥러닝의 학습 과정을 딥러닝 코드를 작성한 사람조차 알기가 어렵다는 점입니다. 모델 학습이 성공했다면 왜 성공했는지, 실패했다면 왜 실패했는지를 해석하기가 어려운데, 그 이유는 기본적으로 딥러닝 모델은 많은 데이터를 한꺼번에 처리하며, 여러 겹의 레이어를 학습시키는 과정에서 적어도 수만 가지의 파라미터를 다루어야 하기 때문입니다. 따라서 VIsualize(시각화)를 통해 각각의 레이어에서 무슨 일이 일어나고 있는지, 더 나아가서 학습 전반적이 과정에서 무슨 일이 일어나고 있는지를 연구하려는 여러 시도들이 ..
2020.03.15 -
Bias & Variance
* 첨부자료의 모든 저작권은 COURSERA에 있음을 미리 밝힙니다. Bias & Variance 이번 포스팅에서 살펴볼 내용은 우리가 Machine Learning 을 통해 구현한 알고리즘의 성능을 진단하고, 오류를 수정하는 방법과 절차에 대한 것이다. 우리가 예측한 알고리즘을 검증하는 방법은 다음과 같았다.1. 알고리즘을 학습시킬 데이터를 더 모은다. 2. 비슷한 류의 Parameter set으로 알고리즘을 수행해본다.3. 추가적인 Parameter를 알고리즘에 집어넣는다.4. Polynomial 한 Parameter를 추가한다.5. Regularization parameter lambda의 값을 증가시키거나 감소시킨다. (즉, 각 항의 영향력을 감소시키거나 증가시켜본다.) 하지만 여전히, 위의 방법..
2019.02.12 -
Neural Networks(2)
*첨부자료의 모든 저작권은 COURSERA에 있음을 미리 밝힙니다. Neural Networks(2)- Examples and Intuition, Multi-Class classification 이번 시간에는 Abstract 하게 살펴보았던 Neural Network의 기본적인 로직의 구현을 통해조금 더 실질적인 인공신경망의 구현을 살펴보고, 또 이를 바탕으로 Output의 결과가 하나가 아닌 Multi-Class Classification모델도 간단하게 살펴보고자 한다. 저번 포스팅에서 간단하게 살펴보았던 인공 신경망의 기본적인 구조이다. 여기서 Input Layer인 Layer 1과 Output Layer인 Layer 3를 제외한 중간의 모든 Layer들은 겉으로 드러나지 않는 Hidden Layer..
2019.02.07 -
Neural Networks (1)
*첨부한 자료의 모든 저작권은 COURSERA에 있음을 미리 밝힙니다. Neural Networks (1)- Basic Model of Neural Networks 지금까지 Linear Regression과, Logistic Regression의 방법을 통해 Linear Model과 Classification 모델에서 컴퓨터가 기계학습을 어떻게 하는지 살펴보았다.이제 이러한 모델들을 바탕으로 Neural Network, 즉 인공 신경망을 구축하여 더 복잡한 학습들을 수행하는 모델을구축하고자 한다. 우선 '인공 신경망' 을 구축하기 위해 실제 사람의 신경망이 어떤 구조로 연결되어 있는지를 살펴보아야 한다.사람의 신경세포는 Input Wire의 역할을 수행하는 "Dendrites"와 Computation을 ..
2019.02.07