[SVM] SVM으로 MNIST 분류하기
서포트 벡터 머신(Support Vector Machine: 이하 SVM)은 Classification 문제에서 결정 경계(Decision Boundary)를 효율적으로 찾는 방법을 제공합니다. 즉, 아래 그림과 같이 두 클래스(빨강, 초록)로 분류될 수 있는 데이터 셋이 있다고 했을 때, 이 데이터셋을 가장 잘 구분 짓는 경계선(실선)을 찾는 것입니다. 이번 포스팅에서는 SVM을 이용해서 MNIST Dataset Classification을 개선해보려 합니다. (Application에 관한 글이므로 SVM의 수학적 원리와 기타 증명 과정은 생략하였습니다.) 지난 MNIST 포스팅 에서는 Random Forest를 이용해 간단한 MNIST 분류 모델을 만들었습니다. 이번에는 SVM을 이용해서 MNIST ..
2020.04.18